Worksheet for 2020-03-09

Conceptual questions

Question 1. If f is a differentiable function and \mathbf{u} is a unit vector, what is $D_{\mathbf{u}} f(a, b)+D_{-\mathbf{u}} f(a, b)$?
Question 2. If f is a differentiable function defined on all of \mathbb{R}^{2},
(a) Can f have a local maximum but no absolute maximum?
(b) Can f have an absolute maximum but no local maximum?
(c) Must f have an absolute maximum when constrained to $x+y=0$? How about $x^{4}+y^{4}=7$?
(d) If f has only one critical point, and that point is a local minimum, does that point have to be an absolute minimum?

Question 3. Show that if (a, b) is a critical point for $f(x, y)$ then it is also a critical point for $\phi(f(x, y))$, where f and ϕ are nice and differentiable functions.

Computations

Problem 1. Find and classify the critical point(s) of $f(x, y)=3 x e^{y}-x^{3}-e^{3 y}$.
Problem 2. Find and classify the critical point(s) of the function $f(x, y)=\sin x \sin y$.
Problem 3. Consider the function

$$
f(x, y)=\int_{x}^{y}\left(6-t-t^{2}\right) \mathrm{d} t
$$

(a) Find the critical point(s) of this function. Does it have a absolute maximum?
(b) Find the absolute maximum when the domain is restricted to $y \geq x$.

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to conceptual questions

Question 1. 0

Question 2.

(a) Sure, a function such as $f(x, y)=x^{3}-x$ will do.
(b) No: an absolute maximum is by definition also a local maximum.
(c) With a constraint of $x+y=0$, not necessarily; consider $f(x, y)=x$. With a constraint of $x^{4}+y^{4}=7$ then yes by the Extreme Value Theorem.
(d) No. See Exercise 14.7.40 in Stewart.

Question 3. This follows from the chain rule: $\nabla \phi(f(x, y))=\phi^{\prime}(f(x, y)) \nabla f(x, y)$.

Answers to computations

Problem 1. The only critical point is $(1,0)$ which by the second derivative test can be classified as a local maximum.
Problem 2. The critical points are

- $(\pi / 2+m \pi, \pi / 2+n \pi)$, which are local maxima when $m+n$ is even and local minima when $m+n$ is odd,
- $(m \pi, n \pi)$, which are saddle points.

Here m, n can be any integers.
Problem 3. You could expand out the integral as a function in terms of x and y, but it's cleaner to not do so and just use the FTC.
(a) The critical points are $(2,2),(2,-3),(-3,2),(-3,-3)$. It does not have an absolute maximum: the quantity becomes arbitrarily large as $x \rightarrow \infty$ and/or $y \rightarrow-\infty$.
(b) This is attained when $x=-3$ and $y=2$, and the value is $125 / 6$. (Can you interpret this visually?)

